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Abstract 

Towards the end of 2019, a novel contagious virus (COVID-19) 
came out of Wuhan, China and turned into a disastrous pandemic. 
Many countries were completely or partially locked down. The 
ongoing pandemic has greatly affected our society and economy 
but, on the other side, it had effects upon the natural 
environment, as it rejuvenated itself. The present study repots the 
air quality and spatial distribution of air quality parameters (PM10, 
PM2.5, NO2, SO2, O3 and CO) in Delhi, taking into account data 
from 36 monitoring stations, for the months of January - April 
2019 and 2020, respectively before and during the COVID-19 
pandemic. The statistical tools like box plot, Pearson’s correlation, 
and PCA were used to interpret air pollution data before and 
during the lockdown period. The results revealed the 
characteristics of pollutants with respect to location, relationship 
between pollutants, and monitoring their level in compliance with 
the limits set by the legislation. The results of multivariate analysis 
were further spatially analyzed by mapping the distribution of 
pollutants by using the Inverse Distance Weighted interpolation. 
The result revealed the gradual reduction in the pollutant 
concentrations (PM10, PM2.5, CO, SO2) and an increment in ozone 
concentration was observed, which was due to a drastic reduction 
in NO2, especially during March and April 2020, immediately after 
the declared lockdown in the region. The overall study indicated 
that the interventions for urban air pollution mitigation are crucial 
in the regeneration of nature. 

Keywords: COVID-19, multivariate data analysis, spatial 
interpolation, air quality, IDW, Delhi 

Rezumat. Analiza spațială multivariată a poluării 
reduse a aerului în Delhi în timpul pandemiei de 
COVID-19 

Spre sfârșitul anului 2019, un nou virus contagios (COVID-19) cu 
originea în Wuhan, China a determinat o pandemie dezastruoasă. 
Multe țări au fost închise complet sau parțial. Această pandemie a 
afectat foarte mult societatea și economia noastră, dar a avut și efecte 
asupra mediului natural, care s-a regenerat. Prezentul studiu 
raportează calitatea aerului și distribuția spațială a parametrilor calității 
aerului (PM10, PM2.5, NO2, SO2, O3 și CO) în Delhi, folosind date de la 
36 de stații de monitorizare, pentru lunile ianuarie - aprilie 2019 și 
2020, respectiv înainte și în timpul pandemiei COVID -19. Instrumente 
statistice precum Diagrama Boxplot, Corelația Pearson și Analiza 
Componentelor Principale/PCA, au fost utilizate pentru a interpreta 
datele privind poluarea aerului înainte și în timpul perioadei de 
lockdown. Rezultatele au evidențiat caracteristicile poluanților în ceea 
ce privește locația, relația dintre poluanți și monitorizarea nivelului 
acestora în conformitate cu limitele stabilite de legislație. Rezultatele 
analizei multivariate au fost ulterior analizate spațial, prin 
cartografierea distribuției poluanților, utilizând interpolarea IDW. 
Rezultatul a relevat reducerea treptată a concentrațiilor de poluanți 
(PM10, PM2.5, CO, SO2) și s-a observat o creștere a concentrației de 
ozon datorită unei reduceri drastice a NO2, în special în perioada 
martie-aprilie 2020, imediat după blocarea declarată în regiune. În 
general, studiul a indicat că intervențiile pentru atenuarea poluării 
aerului urban sunt cruciale în regenerarea naturii. 

Cuvinte-cheie: COVID-19, analiza multivariată a datelor, 
interpolare spațială, calitatea aerului, IDW, Delhi 

 

Introduction 

In December 2019, a novel contagious disease 
named COVID-19, belonging to the coronavirus 

family, was diagnosed in Wuhan city of China (Chen, 
2020). WHO validated in January 2020 that it is 

transmitted among humans through respiratory 

globules. The spread of this disease was found to be 
extremely rapid in the surrounding area of Wuhan. In 

late January 2020, it was termed as an epidemic by 
the authorities and, subsequently, WHO declared a 

worldwide health emergency (Dutheil et al., 2020). In 

the following month of February 2020, it flared up in 
many other countries like Italy, Iran, etc. In due 

course of time, it became pandemic. It was the end 
of March 2020, when more than half of the world's 

population had been under one or another form of 
shutdowns (Tosepu et al., 2020). By the middle of 

April 2020, because of COVID-19, more than 2.1 

million cases were confirmed all around the world, 
with a total of 135,000 deaths (WHO, 2020). 

Due to global lockdown, the industrial, 
manufacturing and the transportation sectors were 

severely affected. However, transportation was most 

affected, as both road and air traffic began to restrict 
the local as well as international movement of people. 

The restriction resulted in the drop of air traffic by 
96%. While human health was impacted massively 

and the world economy simply crashed by COVID-19, 

the restrictions also resulted in the betterment of air 
quality, by reduced emissions into the atmosphere 

(Tobías, 2020). 
One of the most detrimental and inevitable 

consequences of urbanization and industrialization is 
the release of air pollutants. The WHO estimates that 

about 90% of urban residents experience air pollution 

that exceeds WHO guidelines and that air pollution is 
responsible for more than four million premature 
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deaths annually. Vehicles and industrial emissions 

include a lot of air pollutants. 

Theoretical background 

The major pollutants responsible for the 
degradation of air quality in urban areas are oxides of 

nitrogen (NOx), oxides of carbon, oxides of sulphur 
(SOx), ozone and particulate matter (SPM and RSPM) 

(Batterman et al., 2007; Bosco et al., 2005; Emami et 

al., 2018; Marć et al., 2016; Somvanshi et al., 2019; 
Wu et al., 2011). Particulate matter is a carcinogen 

and thus raises the chance of heart attacks (Cesaroni 
et al., 2014; Raaschou-Nielsen et al., 2015). Because 

of the reactive nature of O3, it can damage lung tissue  
and prolonged exposure has been linked to increased 

heart attack risks (Fann et al., 2012; Khaniabadi et al., 

2017a). NO2 is mainly released by the burning of fossil 
fuels and it is highly reactive in nature. Vehicles are 

the major source of NO2 (He L. et al., 2020; He M. Z. 
et al., 2020). Several works proved that long term and 

short term exposures to NO2 could cause death to 

human beings (Faustini et al., 2014). Other health 
hazards caused by this pollutant include respiratory 

disorders, increased sensitivity to asthma and cellular 
inflammation. NO2 and SO2 are the major contributors 

to the emergence of asthma and lung cancer 
(Greenberg et al., 2016; Khaniabadi et al., 2017b). On 

average, the total human deaths per year due to poor 

air quality is 4.6 million all around the world. The 
effects of air pollution are seen in the developed, as 

well as developing nations. In 2012, Europe, one of 
the most developed regions, witnessed the death of 

193,000 people. Hence, air pollution is a major 

concern and a global issue (Cohen et al., 2017).  
Reducing inputs of these pollutants into urban areas 

requires a combination of technological advancement 
and behavior change that can be stimulated by 

governmental regulations and incentives.   

Alterations of human, transport and industrial 
activity are usually the results of long-term economic 

and behavioral change and they are difficult to 
legislate under normal conditions. However, this 

pandemic has brought about certain crisis measures, 
endeavoring to diminish transmission rates that limit 

action, development and business in purviews around 

the world (Bera et al., 2020). While these emergency 
measures are critically important to limit the spread 

and impact of the coronavirus, they also provide a 
glimpse into how governmental calls for behavioral 

change can alter air pollution levels in cities. Thus, it 

is essential to study and understand the pattern of 
changes before and after the lockdown period and, 

on the basis of outcomes, policy-level changes can be 
recommended (Elass et al., 2020).  

One of the very useful statistical tools to study and 
analyze large environmental datasets is the multivariate 

analysis. Another important and useful tool is the 

correlation analysis that can be used to discern the 

relationship between various air pollutants or other 

variables that have an impact on air quality. It is an 
efficient tool to review the most significant aspects or 

sources of chemical components, as it has already been 
used in various air pollution research studies (Binaku & 

Schmeling, 2017; Tiwari & Singh, 2014; Zhu et al., 

2017). Similar to many of the multivariate methods of 
analysis, the principal component analysis (PCA) is also 

a method of data reduction that considers the 
correlation between the studied parameters, as the 

significant number of parameters in the dataset is small 
(Sharma et al., 2020). Due to its usefulness in data 

interpretation and classification, it is widely used in the 

environmental analysis (Wilks, 2011; Mostert et al., 
2010). PCA is used to discover existing relationships 

between meteorology and concentrations of various air 
pollutants along with other techniques like canonical 

correlation analysis. 

Spatial interpolation methods can also be used to 
study air pollution analysis (Akita et al., 2014; Li & 

Heap, 2014). For environmental studies of science 
and management, spatially continuous data of 

different ecological variables is needed. Nevertheless, 
in the case of mountainous regions and deep oceans, 

point sampling is carried out in order to obtain 

information about environmental variables. Hence, to 
convert the point sampling to spatially continuous 

data, different generating methods become important 
tools. Spatial interpolation is one such method, but it 

is usually data-specific or sometimes even variable 

specific. The predictive performance of the methods 
is affected by a lot of factors and studies have proved 

that these effects are inconsistent. Therefore, the 
selection of a suitable method for a particular dataset 

is tedious. Several interpolation methods are 

depending upon the data involved, such as local and 
global interpolation. The Ordinary Kriging (OK) and 

Inverse Distance Weighted (IDW) are the most 
frequently used local interpolation methods, which 

estimate the value with standard error for the 
unsampled point based on value and distance of the 

neighboring sample points. 

Additionally, continuous upgradation of 
instruments and advancement in technique has led to 

the detection of a significant number of pollutants, 
even with very little concentration (Mitra et al., 2020). 

When collecting air quality information from 

monitoring stations, although there is a small number 
of sampling points, useful information can be 

obtained by using multivariate methods that are 
adequate to characterize a given scenario or situation 

in full (Hajmohammadi & Heydecker, 2021). Applying 
statistical methods such as box plots, multivariate 

correlation analysis and PCA, along with geostatistical 

analysis like IDW interpolation can represent a very 
useful tool in the air quality data interpretation 

(Kumari et al., 2021).  
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Hence, the purpose of this research is to investigate 

the effect of the unconventional intervention of the 

Indian Government regarding the lockdown on the 
levels of nitrogen oxides, ozone, sulfur dioxide, carbon 

monoxide and particulate matter (PM10 & PM2.5), to 
map the spatial-temporal distribution of these 

pollutants and to correlate between them during 

lockdown period and pre-lockdown period. 

Study Area 

The case study area selected for the current 

research was Delhi, India's capital city, with 

coordinates ranging from the latitude of 28o24′17′′ to 

28o53′00′ North and the longitude of 76°45′30′′ to 

77o21′30′′ East. It is located along the Yamuna river's 
western bank and occupies an area of approximately 

1,490 km2. It is enclosed in the North by the 
Himalayas and towards South-West by the Aravali 

ranges (Figure 1). This city experiences semi-arid 

climate, having May and June as the hottest months, 
with temperatures reaching 48°C, while at the end of 

December-January, the lowest temperatures drop to 
around 5°C. The monsoon season continues from July 

to September, with July being the month 
characterized by maximum rainfall (about 300 mm). 

 

Fig. 1: Study area and ground sampling points 

 

Delhi has been witnessing rapid population 

growth, i.e. from 1.7 million in 1951 to over 16 million 
in 2011 (Census 2011), which makes it one of the 

high spread suburbs in the world. The land use of 
Delhi is prominently marked by residential, industrial 

and commercial areas coupled with increased socio-

economic activities. The rapid development is also 
accompanied by urban air pollution, Delhi being 

identified as one of the most polluted cities of India. 
Because of the wide spread of COVID-19, a 

nationwide lockdown was imposed from 24th March to 

14th April and it was later extended for many months. 
To follow social distancing, as a measure of caution 

almost all industrial activities and mass transportation 
was prohibited. As a result, the pollution level in Delhi 

was drastically reduced.  

Material and methods 

Data Used 

In Delhi NCR, more than 70 continuous air quality 

monitoring sites were developed by the Central 
Pollution Control Board (CPCB), in association with 

other local environmental protection agencies, in 

order to protect the air quality of the ambient 
environment. Such sites monitor and map the level of 

air pollutants. The data concerning the air pollutant 
concentration levels from these sites include hourly 

concentrations and 24-hour average concentrations 
(daily-mean). For the present study, hourly 

measurements of all the selected parameters (PM2.5, 
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PM10, NO2, SO2, Ozone, and CO) were collected from 

36 sites of Delhi NCR (Official website of Central 

Control Room for Air Quality Management managed by 
CPCB) (Figure 1). The analysis compared the two time 

periods: period 1 is from 1st January till 30th April 2019 
and period 2 is from 1st January till 30th April 2020. 

Multivariate Air Quality Data Analysis 

The statistical tools employed in this study are box 

plots, Pearson’s correlation, and PCA. The most 

significant step in temporal analysis is plotting the 
observational data against time. A Box Plot, sometimes 

also known as the whisker plot, is useful in the 
detection and comparison of outliers. Python-based 

box plots were developed for all the air quality 
parameters and for both periods, in order to graphically 

present the data according to their quartiles. The 

correlation coefficient is a statistical method to 
calculate the degree of association among variables 

when measured in pairs for comparison. Pearson’s 
correlation coefficient is mostly used in linear 

regression. In this study, it is used to measure the 

degree of association between seven air contaminants.  
To lower the dimensionality of a dataset (usually 

normally distributed), a multivariate technique, 
namely Principal Component Analysis (PCA) is used. 

The dataset includes several interrelated variables 
and converts them into non-correlated variables, 

which is a new set of variables that in turn, maximize 

variance. The vast majority of the variation in the 
dataset can be portrayed by considering a few 

principal components at whatever point there is a 
significant correlation between variables. Also, the 

trends and similarities in the data can be visualized 

while retaining the information as it is in the original 
dataset. The Principal components consist of a matrix 

of correlation or covariance. Every Principal 
component derives a full proportion of the overall 

variance. A Principal component shall be considered 

statistically significant if the own value is greater than 
or equal to 1 (Kaiser criterion). 

Spatial Analysis 

To study topological, geometric and geographic 
properties, spatial and statistical analysis was carried 

out. There was a similarity in values obtained from 

nearby points and variability for locations distant from 
each other. The spatial analysis comprises different 

techniques, many of which are in their early 
developmental stage. Different analytic approaches 

are incorporated in these techniques. One such 

technique is the spatial interpolation, also called Geo-
statistics. Geo-statistics can be described as an 

important tool that is essential to study the spatial 
patterns and to calculate the continuous variable 

values that are dispersed temporally at the locations 
that are not part of sampling sites. One of the spatial 

interpolation techniques is that called Inverse 

Distance Weighted (IDW). This approach works on 
the assumption that objects closer to one another are 

more alike in comparison to objects that are farther 
apart. IDW uses the calculated values surrounding 

the prediction position to estimate a value for every 

unmeasured location. The calculated values nearest 
to the prediction position impact the predicted value 

more than those farther away. IDW assumes that 
each measured point exerts a decreasing local impact 

with distance. It gives higher weights to the points 
nearest to the position of prediction and influences 

decrease according to distance. Thus, it is called 

Inverse Distance Weighted. Geostatistical tools were 
applied to determine spatial patterns and distribution 

of air pollutants. 

Results and Discussion 

Description of the data 

Descriptive statistics of the air pollution parameters 
studied in Delhi have been carried out (Tables 1 and 

2). The analysis also includes measures of variability, 

central tendency and form. The pollutants analyzed in 
this research were: suspended particulate matter 

(PM10 & PM2.5), nitrogen dioxide (NO2), ozone (O3), 
sulphur dioxide (SO2), and carbon monoxide (CO).

Table 1: Statistical summary of the air pollutants concentrations during January – April 2019 

  PM10 PM2.5 NO2 SO2 O3 CO 

Count 36 36 36 36 36 36 

Average 240.79 81.46 58.43 22.20 39.89 1.36 

Standard deviation 51.10 17.77 23.99 7.25 19.62 0.56 

Coeff. of variation (%) 21.22 21.82 41.07 32.67 49.17 41.34 

Minimum 146.30 52.76 3.96 7.59 9,21 0.40 

Maximum 336.78 124.66 97.55 40.05 78.18 3.40 

Range 190.48 71.89 93.59 32.46 68.97 3.00 

Stnd. skewness 0.23 0.43 0.04 0.01 -0.06 1.29 

Stnd. kurtosis -0.73 -0.47 -0.60 -0.60 -1.05 3.85 
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Table 2: Statistical summary of the air pollutants concentrations during January – April 2020 

  PM10 PM2.5 NO2 SO2 O3 CO 

Count 36 36 36 36 36 36 

Average 101.77 42.75 20.33 13.80 49.38 0.77 

Standard deviation 22.72 11.00 7.07 6.29 27.23 0.42 

Coeff. of variation (%) 22.33 25.74 34.79 45.56 55.15 54.92 

Minimum 68.78 11.94 6.16 1.22 2.21 0.32 

Maximum 155.44 64.32 36.40 25.89 93.20 1.95 

Range 86.66 52.38 30.24 24.67 91.00 1.63 

Stnd. skewness 0.65 -0.53 0.55 -0.11 -0.16 1.28 

Stnd. kurtosis -0.21 1.45 -0.38 -0.70 -1.04 0.74 

 
The study area has witnessed a significant decline 

of the pollutants after the declaration of three weeks 

of lockdown starting from 24th of March 2020. During 
the study period, almost all the pollutants (except 

ozone - O3) have shown significant declining trends. 
In Delhi, the major source of particulate matter (PM10 

and PM2.5) is represented by traffic and construction 
activities. The average concentrations of these PM10 

and PM2.5 have reduced by approximately fifty percent 

respectively. Large standard deviations and 
coefficients of variation were found for the PM10 and 

NO2 during the pre-lockdown period and for O3 during 
the lockdown period, which indicates heterogeneity in 

the concentrations among the monitoring stations. In 

both intervals, CO was more skewed (asymmetry of 
the probability distribution) due to large differences 

between CO measured at various monitoring stations. 
Plotting the observations against time is an essential 

step in time series analysis. The plot describes the 
data and assists to formulate a reasonable model 

(Núñez-Alonso et al., 2019). 

In the present study we used the Python-based 
box plot for better interpretation of the results. 

Using the box plot, it is possible to study the 
dispersion of all the pollutants and it also helps to 

understand their monthly trend (Figure 2). The box 

plot analysis for PM2.5 shows that during the months 
of January and February, the values were more 

scattered and higher and they appreciably declined 
during the lockdown duration in the city, namely 

during March – April 2020. The temporal patterns of 

PM10 values in Delhi showed a significant decline in 
the months of March and April, 2020 as compared 

to 2019 levels. However, the highest values were 
noted in January 2019 as compared to other 

months. The concentration was much more 
dispersed in the same month. The least dispersed 

concentration was observed in the month of April 

2020, due to the strict implementation of lockdown 
during this month in the city.  

As presented in the figure, the level of NO2 in Delhi 
provides a comparison of NO2 emissions between 

2019 (January - April) and 2020 (January - April). It 

is evident from the plots that NO2 concentration has 

decreased notably during the lockdown period, as 

there was sustainable reduction in the movement of 
vehicles and other transportation modes. The 

reduction in transportation activities and the 
subsequent decrease in oil demand have a major 

impact on the concentration of NO2 in the 
environment, as the primary source of NO2 emissions 

is combustion of fuel in transport (Mahato et al., 2020).  

Exceptionally, there was noticeable increase in the 
case of O3, although it followed the same trend of 

decline in concentration. Similarly, SO2 and CO also 
showed an exponential decline during the lockdown 

phase of the city. 

Correlation Analysis 

Correlations analysis permitted exploring 

ecological relations amongst the envisaged 
pollutants, which showed the significant correlation 

between their sources.  
For each pollutant, Pearson’s correlation 

coefficients were significant in all cases with p 
values≤0.05 (Tables 3 and 4). NO2 significantly 

correlated positively with PM10, with coefficient 

values equal to 0.6261 and 0.5506 in period 1 
(January – April 2019) and period 2 (January – April 

2020) respectively. NO2 also showed a significant 
correlation with PM2.5, with the coefficient value 

equal to 0.5239 for the second period. The 

photochemical smog in the presence of oxide of 
nitrogen can be attributed to the presence of the 

particulate matter in Delhi, with a significant 
correlation between NO2 and particulate matter.  

As it can be seen, O3 is negatively correlated with 
PM10 and NO2, with a Pearson correlation of -0.4015 

and -0.5667, respectively in the first period of the 

study, which consequently decreased in the second 
period due to the decline in the concentration of the 

pollutants. PM10 significantly correlated positively with 
PM2.5, with coefficient values equal to 0.7590 and 

0.7747, respectively, in both periods, which suggested 

a good association and a common source.
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Fig. 2: Temporal comparative analysis of air pollutants 
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Table 3: Correlation matrix among the six air pollutants for the first time interval (January – 

April 2019) 

  PM10 PM2.5 NO2 SO2 O3 CO 

PM10 - 0.7590 0.6262 -0.0611 -0.4016 0.1268 

PM2.5 0.7590 - 0.3504 -0.0226 -0.3214 0.0554 

NO2 0.6262 0.3504 - 0.1352 -0.5667 0.0539 

SO2 -0.0611 -0.0226 0.1352 - 0.1653 0.2701 

O3 -0.4016 -0.3214 -0.5667 0.1653 - -0.1058 

CO 0.1268 0.0554 0.0539 0.2701 -0.1058 - 

 

Table 4: Correlation matrix among the six air pollutants for the second time interval (January – 

April 2020) 

  PM10 PM2.5 NO2 SO2 O3 CO 

PM10 - 0.7747 0.5507 0.2118 -0.3461 -0.1517 

PM2.5 0.7747 - 0.5240 0.0936 -0.2065 -0.0665 

NO2 0.5507 0.5240 - 0.2244 -0.3009 0.1347 

SO2 0.2118 0.0936 0.2244 - -0.3540 0.0817 

O3 -0.3461 -0.2065 -0.3009 -0.3540 - -0.2029 

CO -0.1517 -0.0665 0.1347 0.0817 -0.2029 - 

Principal Component Analysis 

Generally, geospatial datasets are difficult to 
handle and interpret. Hence, to increase the 

interpretability of the dataset, the reduction of the 

data dimensionality with less information loss can be 
done by using PCA. PCA creates a new set of 

uncorrelated variables that, in turn, maximize variance. 
According to Kaiser criteria, the principal 

components higher than 1 should be retained and, 
according to this, only three components of 2019 

accounted for 81.77 percent of the variation in the 

dataset. The first component explained about 

39.31% of the total variance and it had moderate 
positive loadings of PM10 (0.585) and PM2.5 (0.577), 

which means that parameters under this group were 

responsive components of air pollution. The second 
component was responsible for 28.13% of the total 

variance and it had a moderate positive loading of 
carbon monoxide (0.518) and a negative loading of 

ozone (0.661). Vehicular pollution and biomass 
burning are the major sources of carbon monoxide 

pollution in the region. The third component 

explained 14.33% of total variance (Tables 5 and 6).

Table 5: Eigenvalues and accumulated variance of the principal components, 2019 

Component number Eigen value Percent of variation Cumulative percentage 

1 2.54709 39.3131 39.3131 

2 1.35116 28.1333 67.4464 

3 1.1747 14.3309 81.7772 
4 0.6189 9.2381 91.0153 

5 0.21867 6.6244 97.6397 

6 0.08148 2.3603 100.0000 

 

Table 6: Eigenvalues and accumulated variance of the principal components, 2020 

Component number Eigen value Percent of variation Cumulative percentage 

1 2.19304 54.6509 54.6509 

2 1.82523 23.9683 78.6192 

3 0.91782 10.0398 88.659 
4 0.47604 6.9217 95.5807 

5 0.32402 3.4108 98.9915 

6 0.25687 1.0085 100.0000 
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In 2020, out of all six components, only two were 

characterized by Eigen values above 1 and they 

accounted for 78.61 percent of the variation in the 
dataset. The first component explained about 54.65 

percent of the total variance and it had moderate 

positive loadings of NO2 (0.460) and negative loading 

of SO2 (0.427) and O3 (0.531). The second component 

was responsible for 23.96 percent of the total variance 
and it had a positive loading of PM10 (0.529), PM2.5 

(0.639) and carbon monoxide (0.467) (Table 7).

Table 7: Factor Loading Component wise for both time intervals 

Variable 2019 Factor Loading Component wise 2020 Factor Loading Component wise 

 1 2 3 1 2 

PM10 0.58577 -0.08478 0.29968 -0.35287 0.52964 
PM2.5 0.57730 -0.13411 -0.07424 -0.28847 0.63967 

NO2 0.27888 0.27812 -0.88693 0.46018 0.20953 

SO2 0.37038 -0.43640 0.04022 -0.42766 0.00054 
O3 -0.06601 -0.66191 -0.21491 -0.53146 -0.21964 

CO 0.32293 0.51856 0.26501 0.33935 0.46707 

*Statistically significant loadings are marked by bold 

 

Spatial concentration pattern of major 
pollutants during lockdown and pre-
lockdown phase 

The IDW spatial interpolation method was 
employed to find out the spatial extent of the 

pollutants and their ranges for both time intervals. 
These maps showed that PM2.5 were generally 

dispersed all through the city, even surpassing the 

yearly normal breaking point for the assurance of 
human wellbeing, i.e. 60µg/m3 and ranged in 

category of very poor to poor during the first period 

(2019); subsequently, during April 2020, due to 

lockdown implementation by the government, PM2.5 
was within the permissible limits, i.e. in the category 

of moderate to satisfactory (Figure 3). The 
northwestern part of the study area, mainly including 

the western peripheral highway and the major 

districts of Bawana, Mangolpuri, and Model Town was 
the most affected by the PM10 pollutant that fell under 

the very poor to severe category (Nigam et al., 2021). 
However, a significant decrease in concentration was 

evident in April 2020, ranging from satisfactory to 

good category (Figure 4). 

 

Fig. 3: Spatial comparative analysis of PM2.5 
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Fig. 4: Spatial comparative analysis of PM10 

The major source of NO2 in the urban area is 

represented by vehicle transportation and 
manufacturing or industrial units. During the 

lockdown, all these activities were hampered and 
there was a significant decline in the NO2 level in April 

2020, ranging under satisfactory to good category 

(Figure 5). In the O3 and SO2 interpolation map, it can 

be observed that during both periods, i.e. before and 

during lockdown, the concentration of both these 
pollutants was within the average limit prescribed by 

the government and ranging between satisfactory to 
good category (Figures 6 and 7). A similar trend is 

observed in CO, although it was within the permissible 

limit throughout the study interval (Figure 8). 

 

Fig. 5: Spatial comparative analysis of NO2 
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Fig. 6: Spatial comparative analysis of O3 

 

 

Fig. 7: Spatial comparative analysis of SO2 
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Fig. 8: Spatial comparative analysis of CO 

 

The trend of all six air quality parameters was 
studied by using the geostatistical analysis for two 

significant periods (before and during lockdown). A 
decreasing trend in the levels of all parameters has 

been observed between the two periods, for the 

months of March and April. This is the aftereffect of 
the air quality improvement during the advancement 

of COVID-19 pandemic, generally marked by the 
decrease of street traffic emissions. Another reason 

concerns the decrease of industrial activities in the 
area (Garg et al., 2021). 

As the urban ecosystem mainly focuses on socio-

economic growth and overlooks the various 
environmental issues, such as pollution, it is exposed 

to a health threat. The environmental restoration 
process has drawn significant attention for the 

analysis of air pollution in the course of the pandemic. 

Conclusion 

COVID-19 has now become a pandemic all around 
the world and it poses a severe threat to human 

wellbeing, while also hindering monetary exercises. 
Nevertheless, it has surprisingly ensued positive 

development in environmental aspect. The pollution 
of environment is declining and nature is recovering 

itself. In the present study, the six major air pollutants 

of Delhi were compared between pre-lockdown and 
during lockdown period. Among the selected 

pollutants, the significant reduction was in PM10 and 
PM2.5, followed by NO2, SO2 and CO, due to 

suspension of all industrial and transportation 
activities. On the other hand, due to the decrease in 

the concentration of NOx and particulate matter, 

there was a slight increase in O3 concentration. 
Perhaps this effect is not permanent, but it is positive 

on the environment. Also, governments and people 
ought to gain from this lockdown the most proficient 

method to decrease pollution on long term basis. 
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