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Abstract 

Agricultural drought is one of the most important natural hazards 
worldwide, affecting a significant proportion of the global 
population. Earth Observation multi-spectral imagery satellites 
can provide a comprehensive picture of all land and sea areas of 
the Earth. Free of charge and open access imagery from missions 
such as Sentinel-2 provides high quality imagery with rapid high 
revisit period. Earth Engine© developed by Google Inc. provides 
the possibility to view and analyse petabytes of remote sensing 
data in archives that include more than thirty years of satellite 
imagery and scientific datasets. This paper proposes a cloud- 
based computation approach and analysis of multi-temporal, high 
resolution Sentinel-2 imagery on the Mostiștea Plain (Romania) in 
order to evaluate the agriculture drought. Custom javascript code 
was created in the Code Editor for calculating and analyzing 
remote sensing-based indices between 2017 and 2019. The 
results were classified into six classes: Water, No drought, Light 
drought, Moderate drought, Heavy drought, Severe drought. 
According to the classification, the southern half of Mostiștea Plain 
was the most affected area by a heavy agricultural drought during 
2017-2019 period.  

Keywords: agricultural drought, Google Earth Engine, remote 
sensing, Sentinel-2. 

Rezumat. Evaluarea secetei agricole bazată pe 
analiza multi-temporală în cloud a imaginilor 
satelitare. Studiu de caz: Câmpia Mostiștei 
(Romania)   

Seceta agricolă este unul din cele mai însemnate hazarde la nivel 
mondial, afectând o proporție semnificativă a populației globale. 
Imaginile satelitare multispectrale de observare a Pământului oferă 
o imagine cuprinzătoare a tuturor suprafețelor terestre și marine ale 
Pământului. Imaginile disponibile online și gratuite ale misiunilor 
precum Sentinel-2 oferă imagini de înaltă calitate și o perioadă 
scurtă de revizitare. Earth Engine© dezvoltat de Google Inc oferă 
posibilitatea de a vizualiza și analiza petabyți de date de satelitare 
regăsite în arhive ce includ mai bine de treizeci de ani de imagini 
satelitare și seturi de date științifice. Această lucrare propune o 
soluție bazată pe calcularea și analiza în sisteme de tip “cloud” a 
seriilor de imagini multitemporale, de înaltă rezoluție Sentinel-2, 
asupra Câmpiei Mostiștei (România) în vederea evaluării secetei 
agricole. Un cod de tipul javascript a fost creat prin intermediul 
interfeței Code Editor în vederea cal-culării și analizării indicilor 
spectrali de teledetecție pentru anii 2017-2019. Rezultatele au fost 
clasificate în șase clase: Apă, Fără secetă, Secetă slabă, Secetă 
moderată, Secetă puternică și Secetă severă. Conform clasificării, 
jumătatea sudică a Câmpiei Mostiștei a fost cea mai afectată de o 
secetă agricolă puternică în intervalul 2017-2019. 

Cuvinte-cheie: secetă agricolă, Google Earth Engine, telede-
tecție, Sentinel-2. 

Introduction 

Drought is a major and complex hazard, with a lot of 
implications in many different fields around the world 

(Hu et al., 2019). Because it affects various socio-
economic sectors, several definitions have been 

developed considering the field affected (Wilhite, 1993) 

According to the researchers Wilhite and Glantz (1985), 
drought can be grouped, by type, in four categories: 

meteorological, hydrological, agriculture and socio-
economic. Each of them can have a certain duration, 

intensity, spatial coverage and socio-economic impact 
and they can also influence each other. Agricultural 

drought is linked, especially, to some characteristics of 

the meteorological drought, such as: high temperatures, 
precipitation shortages and evapotranspiration (Wilhite 

and Glantz, 1985). It appears when the soil moisture 

availability to plants decreased so much that the crop 
yield is affected and hence the agricultural profitability 

(Mannocchi et al., 2004).  
There are several ways to monitor the agricultural 

drought, one of them being the use of satellite 

images. Earth Observation satellites provide a 
comprehensive temporal and spatial perspective of 

the land, that helps us obtain detailed analyses for 
large areas. Several remote sensing indices have 

been developed to monitor the agriculture drought. 
For instance, the Normalized Difference Vegetation 

Index (NDVI) is one of the most efficient and 

commonly used, because the value of this index can 
be used to distinguish the area with vegetation from 

those without and can also provide information about 
the vegetation health (Hu et al., 2019). According to 

studies (Heim, 2002; Hu et al., 2019 ), NDVI alone is 

not able and is not recommended to be used to 
identify vegetation drought, because some factors 
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such as land cover or pest infestation can lead to an 

NDVI anomaly similar to that caused by drought. So, 

other indices have been proposed, such as 
Normalized Difference Water Index (NDWI), 

Normalized Drought Index (NDDI), Vegetation 
Condition Index (VCI), Vegetation Temperature 

Condition Index (VTCI), Visible and Shortwave 

Drought Index (VSDI) or Normalized Multiband 
Drought Index (NMDI). 

With the development of Earth Observation 
techniques, several studies have applied remote 

sensing data in order to map, monitor and analyze the 
agricultural drought and its effects on a large scale 

(Yağcı Levent, 2014; Lee et al., 2016; Hu et al., 2019; 

Crocetti et al., 2020; Jiménez-Donaire et al., 2020), 
including for South-Eastern Europe. For example, 

Pascoa et al. (2020) performed a detailed study of the 
impact of drought event on vegetation activity in this 

part of Europe, having as case studies Romania and 

the Republic of Moldova. The authors evaluated the 
response of vegetation’s photosynthetic activity to 

drought conditions from 1998 to 2014 over these 
countries, using a multi-scale drought indicator (SPEI) 

and a vegetation index (NDVI).  
Romania is one of the European countries affected 

by drought. The phenomena have extended as a result 

of cumulative transformations that took place over vast 
regions nationwide (deforestations, soil erosion and 

others) and on the basis of climatic im-balance (Vizitiu 
et al., 2016). According to Stăncălie et al. (2014), most 

of the agricultural lands in Romania are affected by 

drought (about 7 million ha). The areas with the 
biggest problems are located in the South, South-East 

and East of the country (Mateescu et al., 2013).  
In the national studies, Stăncălie et al. (2014) 

showed that the most suitable indices for agricultur-

al drought characteristics monitoring are NDVI, NDWI 
and NDDI. Angearu et al. (2018) used Normal-ized 

Difference Drought Index (NDDI) together with the 
Fraction of Absorbed Photosynthetically Active 

Radiation (FAPAR) in the evaluation of the extent and 
intensity of drought in Dobrogea (Romania), thus 

identifying three types: moderate, severe and 

extreme drought. 
The paper aims to present an approach to moni-

toring agriculture drought in Romania, by using 
Sentinel-2 imagery from the ESA Copernicus Pro-

gramme. In this sense, a time series analysis of the 

satellite-derived indices such as NDVI, NDWI and 
NDDI were performed for three years (March, 28th, 

2017 - December, 31st, 2019). As a case study, it has 
been chosen the geomorphological unit named the 

Mostiștea Plain. 

Study area 

The Mostiștea Plain is located in the South-East of 
Romania and, according to the geographer Vintilă 

Mihăilescu (1925), it is part of the Southern Bărăgan 

Plain (Fig. 1), which is a subunit of the Wallachian Plain 

with an area of about 1000 sq km.   
From a geomorphological point of view, the 

Mostiștea Plain has a smooth appearance, covered 
with a thick layer of loess and loess deposits, with 

micro-depressions known in literature as “crovuri”, 

mounds and terraced valleys.  
Mostiștea Plain is a warm and moderately dry re-

gion, with an average annual temperature of +10.5 to 
+11°C and average annual precipitations of 480 to 500 

mm/year (Grecu et al., 2012). Due to the rich soils and 
suitable landforms, it is an important agricultural area, 

but the relatively low annual precipitation values make 

it susceptible to land degradation, associated with 
prolonged drought seasons. 

 

 

Fig. 1: Location of the study area (Source: au-

thors) 

Materials and methods 

For this study, NDDI was calculated in order to 
assess the severity of the drought phenomena dur-

ing 2017, 2018 and 2019. NDDI is based on the 
strong relationship between NDVI and NDWI values 

and it is a very good indicator of summer drought 
(Renza et al., 2010).  

As shown by Lee et al. (2016), NDDI has a strong 

relation with gross primary production (GPP), especially 
during spring and fall, making it a good indicator for 

evaluating crop damages induced by drought. The index 
combines information from RED, NIR and SWIR spectral 

bands. NDDI was generated using the equation:   

 
NDDI=(NDVI-NDWI)/(NDVI+NDWI) 

 
NDVI is based on the properties of green vegetation 

to absorb radiation in the RED electromagnetic spectrum 

and reflect radiation in the electromagnetic spectrum of 
NIR. The index was first proposed by Rouse et al., (1973) 

by normalizing the simple ratio, while conducting a test 
with ERTS-1 (Landsat-1) imagery, for measuring green 
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biomass values. Nowadays, the NDVI is the most widely 

used remote sensing index for estimating green vegeta-

tion cover. The formula for this index is: 
 

NDVI=(NIR-RED)/(NIR+RED) 
 

NDVI values represent the plant chlorophyll con-

tent, so this is the reason why the index is suitable for 
identifying agriculture drought. The limitations of its 

use are related to the fact that the values may show 
non-drought stress conditions, because it can be af-

fected by other factors, such as: the effects of the soil 
humidity, pest infection, land cover/land use changes, 

flood or fire (Jiménez-Donaire et al., 2020; Yağcı Le-

vent et al., 2014). Therefore, it is important to use 
NDVI index in combination with other vegetation indi-

ces for drought assessment. 
Plant canopy water content can be determined us-

ing two near infrared channels (Gao, 1996) thus result-

ing NDWI. Previous research studies have shown a 
good correlation between NDWI values and soil mois-

ture content making it a prime indicator of drought 
phenomena (Serrano et al., 2019). It is computed us-

ing the near infrared (NIR) and the short wave infrared 
(SWIR) reflectance, the mathematical formula to com-

pute NDWI is: 

 
NDWI=(NIR-SWIR)/(NIR+SWIR) 

 
For this case study, high spatial resolution Coperni-

cus Sentinel-2 data were used. Sentinel-2 mission con-

sists in a pair of two satellites, designed to capture 
multispectral images of the Earth’s land masses and 

coastal areas, with a combined revisit rate of 5 days at 
the equator and spatial resolution up to 10 m. The sat-

ellite constellation is orbiting at 786 km on a near polar 

sun synchronous orbit. Sentinel-2A started the mission 
on the 23rd of June 2015, followed by Sentinel-2B on 

the 7th of March 2017. Onboard the satellites, multi-
spectral optical sensors acquire information on 13 

spectral bands in the visible light spectrum, near infra-
red and short wave infrared (Table 1) making it proper 

for calculating NDDI. 

Sentinel-2 mission is designed to provide conti-
nuity for missions such as SPOT or Landsat on acquir-

ing high quality remote sensing data. The free full open 
data policy for all the Copernicus data makes Sentinel-

2 imagery an easy to access and highly valuable asset 

for scientists and researchers. Every day, Sentinel-2 
satellites acquire more than 1TB of remote sensing im-

agery data combined. The vast amount of data makes 
impractical the workflow of downloading, processing 

and analyzing of large scale or multiyear time series on 
local hardware. Cloud computing platforms offer both 

the processing power and also eliminate the need for 

downloading and storing large amounts of data sets. 
This method of processing remote sensing imagery 

greatly reduces the cost for the end user, the services 

can be accessed with low end specs desktop or laptop 

PC, only a reliable internet connection being required. 

Table 1 Sentinel-2 spectral bands used in the 

study  

Band 

Num-
ber 

Central 

Wave-
lenght 

(nm) 

Band-

width 
(nm) 

Spatial 

Resolution 
(m) 

Red 
(B4) 

665 31 10 

NIR 

(B8) 

842 106 10 

SWIR 

(B11) 

1610 91 20 

Source: https://sentinel.esa.int/ 

In this case study, a number of 80 images corre-

sponding to granules 35TMK and 35TMJ were used in 
order to calculate NDDI over the study area. The im-

ages were accessed and processed using Google Earth 

Engine (Fig. 2), a free to use online cloud based plat-
form, which grants access to a library of multi-petabyte 

of remote sensing imagery spanning for more than 
forty years. The remote sensing imagery collection 

consists in multiple Earth observation missions includ-
ing: Sentinel, Landsat, Terra, Aqua, and other.  

 

 

Fig. 2: Google Earth Engine processing work-

flow 

Google Earth Engine was accessed through the 
Code Editor, an integrated development environment 
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(IDE) that allows users to access all the functions 

directly within the web browser. Analysis of multi-

temporal series requires that the images to be 
atmospherically corrected in order to eliminate the 

disturbances caused by the atmosphere which can 
greatly differ from a day to another. Starting with the 

28th of March 2017, Google Earth Engine automatically 

processes Sentinel-2 images from Level-1C (Top of 
Atmosphere reflectance) to Level-2A (Bottom of 

Atmosphere reflectance), using Sen2Cor processor 
developed by ESA. For this analysis, Level-2A 

atmospherically corrected images were used, ranging 
from March, 28th, 2017 until December, 31st, 2019.  

The first and one of the most important steps in 

fetching the imagery for the analysis is to filter the 
cloudy pixels. In the case of passive optical remote 

sensing, clouds make the data useless for Earth 
surface observations. Clouds captured by the 

sensors of Sentinel-2 were masked out using the 

quality assurance product (QA60). QA60 is 
automatically generated during the atmospheric 

correction processing step, by using Band 10 in the 
range of 1374 nm and with a spatial resolution of 

60m. The QA60 band can have three values: 0 for 
cloud-free pixels, 1 for dense cloud pixels and 2 for 

cirrus cloud pixels. In this case, images were filtered 

using the value 0 of the QA60 band.  
Alongside the cloudy pixel masks, query filters 

were set for the images, by date, using filter Date 
function and by the region of interest (ROI) 

filterBounds. The region of interest was defined by 

ingesting as an asset a vector in CSV (Comma-
separated values) format containing the limits of the 

Mostiștea Plain, in polygon type.  
The computation of the NDDI spectral index 

requires several steps. The first one was the 

computation of NDVI and NDWI indices by selecting 
the appropriate bands and using the normalized 

Difference function, specially designed to provide 
users the means to quickly calculate normalized 

difference indices between two bands. In the case of 
NDVI, bands 8 and 4 were used, and for NDWI - 

bands 8 and 11. NDDI was calculated combining the 

previous two spectral indices using simple operators: 
var NDDI= NDVI.subtract (NDWI). Divide 

(NDVI.add(NDWI)rename ('NDDI')). 
Ui.Chart.image.series function was used in order 

to generate multi-temporal charts with values of the 

selected products. The chart values can be exported 
as CSV files for future analyses. The resulting 

products were exported in Google Drive using 
Export.image.toDrive function in Geotiff format than 

downloaded and stored on the computer. The average 
size of every product generated in Earth Engine is of 

about 100 MB. Taking into account that storing a 

single, unprocessed multispectral Sentinel-2 image 
takes up about 700 MB of storage space, the 

possibility of storing only the final product is a great 

advantage. 

The NDDI products were reclassified in ArcMap in 
six classes using Reclassify function from the Spatial 
Analyst Toolbox. In order to calculate the surfaces of 
each class, the reclassified raster was transformed 

into vector format. The raster was dissolved by class 

and the values for each class were calculated in the 
attribute table. 

Results and discussions 

The resulting data show a good distribution of 
satellite images through the entire analysis period, 

except for late spring and the beginning of summer 
2019, when cloud cover over the study area was pre-

sent for many days in a row. 

Fig. 3 illustrates the values of NDVI, NDWI and 
NDDI during the study period. It can be seen a good 

correlation between all indices, high values of NDDI 
being illustrated in periods with low NDWI and NDVI 

values with a decrease of drought phenomena in 

periods with green vegetation and high level of plant 
canopy water.  

 

 

Fig. 3: NDVI, NDWI and NDDI values 

 

The end of summer and the beginning of au-
tumn, a period that in the context of the Mostiștea 

Plain coincides with the harvesting of the spring 

crops and pre-sowing period of the autumn crops, 
shows an increase in drought values. These phe-

nomena affect the autumn crops, especially rape-
seed, which is more sensitive to the lack of water 

than barley or wheat. The lack of vegetation cover 

during this period exposes soil to different natural 
external agents such as wind and water, which by 

means of specific geomorphologic processes con-
tributes to land degradation.  

Based on Fig. 3, we can see that NDDI values in 

the autumn of 2017 are higher than NDDI values of 
the same season in 2018. The NDVI values for the 

autumn of 2017 are showing us that a large part of 
the study area was seeded with autumn crops. When 

comparing the same interval with the NDWI values, 
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it can be clearly seen that the vegetation water con-

tent is low.  

A prolonged drought phenomena spanning from 
the autumn of 2018 until the spring of 2019 can be 

observed in the constant high values of NDDI. This 
translates in a short vegetation period during the 

summer of 2019 described by all three indices.  

NDDI values were grouped in five categories in 
order to better illustrate the magnitude of drought. 

Values below 0.05 represent water bodies, 0.05 – 0.1 
surfaces where drought did not occur, 0.1 – 0.15 light 

drought, 0.15 – 0.2 moderate drought, 0.2 – 0.25 
heavy drought and values above 0.25 represent 

severe drought. Calculating the surfaces according to 

the predefined classes, involved the conversion of the 
raster into vector format, dissolving the vector layer 

by class and calculating the area for each class. The 
results were exported into Excel format and charts of 

the values were produced. 

The charts (Fig. 4-6) illustrate hat during 2017 and 
2018 approximately 10 sq km were affected by severe 

drought, while in 2019 severe drought occurred on 
more than 40 sq km, which count for 4% of the total 

area. Also, in 2019, heavy drought occurred on 481 
sq km (48.23%), making it the most affected year 

form the study period.  

2018 is less affected with 225 sq km (20.83%) of 
land on which light drought occurred and more than 

8 sq km (0.86%) where the drought phenomena did 
not occur. 

 

 

Fig. 4: 2017 NDDI Values 

 

Fig. 5: 2018 NDDI Values 

 

 

Fig. 6: 2019 NDDI Values 

 

Fig. 7: 2017-2019 average NDDI values 

 

The chart displaying average NDDI values for the 
entire study area was created by computing the arith-

metic average of 2017, 2018 and 2019 (Fig. 7). It 

shows that during the study period, the Mostiștea 
Plain mainly experienced moderate drought on 686 sq 

km counting for approximately 68% of the total area, 
while heavy drought occurred on 245 sq km (24%).  

In order to better illustrate the spatial distribution 
of the mean annual NDDI values during the study pe-

riod, four maps of the Mostiștea Plain are presented 

in Fig. 8. It can be observed that the most affected 
year by drought is 2019 and the least affected is 

2018. The 2017-2019 map represents the arithmetic 
average of the values for all three years, indicating 

that drought severity is greater in the center and 

south eastern region, and less severe in the north 
western region.  

The central part of the Mostiștea Plain coincides 
with an area with a higher fragmentation of the land 

parcels. This can be a clue that management of 
smaller parcels by many farmers is more prone to ag-

riculture drought. 

Based on this information, we can conclude that 
large areas of the Mostiștea Plain are susceptible to 

agricultural drought. The recent studies such as Dai 
(2011), shows that because of the current climate 

change trends, drought events will be more frequent 

and with greater magnitude. Nowadays, Remote 
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Sensing and GIS can greatly improve the knowledge 

about natural hazards.  

Results like the ones presented in this paper are 
essential for acting in accordance with the extent of 

drought phenomena in order to reduce or even 
eliminate its negative effects. One the priorities of the 

United Nations, in the framework of the 2030 Agenda 

for Sustainable Development, is the end of hunger by 

ensuring food production and sustainable agricultural 
practices. Using such kind of data, local and regional 

legislators are provided with punctual and reliable 
data in order to take the best actions. 

 

  

  

Figure 8: Spatial distribution of agricultural drought in Mostiștea Plain 

a) 2017; b) 2018; c) 2019; d) 2017-2019 (Source: authors)  

Conclusion 

Drought, including the agricultural drought, can 
have substantial negative impact on economic and 

social systems. Remote sensing is one of the compo-
nents that helps identify and evaluate the intensity 

and spatial distribution over large areas and multiple 

years. In this instance, Sentinel-2 imagery was used 
to conduct an assessment of drought phenomena 

over three years. Google Earth Engine proved to be a 
very powerful and relatively easy to use application. 

The vast documentation provided by Google Earth 

Engine development team enables rapid on under-
standing how to perform simple and even complex 

analysis for users with minimum programming 
knowledge. Sentinel-2 imagery demonstrated to be a 

good and reliable data source. The high resolution of 

the images enabled to precisely evaluate the agricul-
ture drought even for small areas.  

This application was used to calculate NDVI, 
NDWI and NDDI for Mostiștea Plain. The results 

showed that the southern half of the Mostiștea Plain 

is affected by heavy agricultural drought during 
2017-2019 period. The resulting maps show that 

small parcels, especially in the center of the study 
area, are the most affected (Fig. 8, d). This can be 

caused by the uneven exploitation of the land by 

multiple property owners that are unable to employ 
sustainable agriculture practices.  

At a local level, the good spatial resolution of the 
Sentinel-2 imagery of 10m, can help farmers assess 

their parcels. Already, a large number of services tar-
geted at farmers offers remote sensing products 

based on Sentinel-2 imagery. A product such as NDDI 
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can enable farmers to better understand drought 

phenomena that affects their farms.  

For the future work, we propose to extend the ar-
ea of interest over the entire Southern Bărăgan Plain, 

which is one of the most important agricultural areas 
of Romania.  
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