fg
Volume XV |

Measuring and modelling water transport on Skaftafellsheiði, Iceland

Abstract: Areas with thick basaltic aquifers are used for drinking water supply and irrigation purposes, such as the Columbia River Basalt group in northwest USA and the Deccan Traps in India. However, rainfall-runoff processes in these basaltic areas are poorly understood. Cooling joints can transport large amounts of water, but – due to their limited porosity – they are vulnerable for over-abstraction. On Iceland, in the small Skaftafellsheiði basaltic catchment (4 x 6 km), field data were collected in 2014 and 2015. Two small streams discharge the rain surplus. Precipitation was measured at various elevations on the ridge. Also, the discharge of the streams was measured. A groundwater flow model was constructed in order to get more insight in the physical properties of the basalt aquifer and its rainfall-runoff properties. The field experiments showed that precipitation increases linearly with surface elevation. On average, the precipitation at 800 m+msl was almost double, relative to the precipitation at 200 m+msl. Calculated ETpot was rather high, due to the 19 potential sun hours per day during the Icelandic summer. Field experiments revealed quick discharge response on rainfall events, but also rather constant base flow during dryer periods. This indicates a limited infiltration capacity, but also a considerable storage capacity in the subsequent layers. The peat layer is believed to be the dominant storage/reservoir. Peat, regolith and an organic layer formed the top layer in the GMS-Modflow groundwater model. The thick basaltic aquifer was split in a series of model layers. Best results were obtained by using a decreasing hydraulic conductivity to depth. The transient model overestimated the groundwater levels at the outlet, but managed to reproduce the wet/dry conditions in the catchment rather well. This indicates that it is possible to model complex basaltic aquifers, by taking a large Representative Elementary Volume (REV) as starting point.