fg

Subscribe2


 

Hydrology

Volume XVII |

Study of Landscape Evolution in North Koel River Basin, Jharkhand, India: Tectonic and Structural Implications Based on Hypsometric Analysis

Abstract: Hypsometry is widely used for inferring tectonic effects and erosion status of landscapes. Tectonics, structural inhomogeneity, lithologic differences, and climatic variations lead to topographic undulations discerned into discrepancies in the values. Hypsometric index (and curve), indicative of frequency distribution of proportional elevation with the respective proportional area, is used as a tool to describe characteristics of landscape morphology, lithological variability, and degree of fluvial dissection. Many workers have used to infer comparison of rates of erosion with tectonic uplift rates. However, there are many other factors reported to influence topographic undulations other than tectonics which lead to a variety of hypsometries. Morphotectonic index, hypsometric integral, calculated using digital elevation models (DEMs) in GIS environment has been widely used for inferring tectonic effects, status of erosion, and structural controls. The present study is conducted in the North Koel River basin. This river rises in the Ranchi plateau and joins the Son River a few miles north-west of Haidarnagar, is the right bank tributary of the Son River. Along its entire course of flow, North Koel river (260 km) flows through plateau region mostly formed of metamorphic rocks. Hence, structural control seems to be the primary control on the landscape evolution of this sub-basin. In this study, hypsometric integral (and curve) has been calculated for third order and upper order streams to look whether this morphotectonic index shows any sign of tectonic, structural, or lithologic control on the landscape evolution in the North Koel River basin.

Volume XVII |

Application of Wireless Sensor Networks in Flood Detection and River Pollution Monitoring

Abstract: In this paper, we propose a system for river monitoring based on wireless sensor network (WSN) technology. This system consists of sensor nodes that periodically measure several environmental parameters such as flow rate, water level, rainfall and pollution level. Each type of sensor node has two threshold values and measured data is compared with them at the end of the reporting interval. Based on the current situation in WSN and measured data velocity sensors can use three different frequencies of reporting. Simulation of river monitoring system is done using Matlab software tool and the results of river mainte-nance during one WSN life cycle are presented. Two possi-ble hierarchical system architectures are considered and their performance is compared. The optimal system archi-tecture for this WSN application is discussed based on the obtained results.

Volume XVII |

Arch dam failure preliminary analysis using HEC-RAS and HEC-GEO RAS modeling. Case study Someșul Rece 1 reservoir

Abstract: This paper presents a preliminary analysis/simulation of the Someşul Rece 1 dam breaking scenario, from the homonym hydrographic basin, located in the north-eastern part of the Apuseni Mountains, at a 0.1 % probability tributary flow rate calculation. The study of the floodplain areas, that occur after the failure of the Someşul Rece 1 dam, was achieved with the help of 1D hydrological modelling. This type of modelling is one of the most complex (Cameron et al., 2006), involving both, the definition of a model with temporal evolution of the dam rupture, and the simulation of a unsteady flow stream in the downstream sector. For the dam analysed area and the downstream sector, several scenarios and modelling of hydrological systems was achieved, with the help of HEC-RAS 5.0.3 software, developed by the Hydrologic Engineering Center (U.S. Army Corps of Engineers).
This free software is the most widely used worldwide in the domain, particularly by the official agencies, having a continuous development, given by the involvement of specialists. The software simplifies the problem of hydrodynamic modelling, due to the limitation to a 1D model. Because the flood obviously has a spatial character, GIS software (ESRI ArcGis with the HEC-GeoRAS extension) were used in determining and defining the hydrographic elements (channel, talweg, banks etc.) and, also, in the representation of the results. Maps of the flood-prone areas have been developed, maps which indicated the magnitude of the estimated accidental flood downstream. The results of the simulation were also used to determine the anticipation time.

Volume XVII |

Playing with water – An introduction to experimental hydrology

Abstract: Water is the most important resource for the humankind, thus understanding hydrological processes could be con-sidered a vital task. Therefore, the main aims of this papers are to assess: (i) the current status of hydrologic field ex-periments; (ii) the techniques and the stages of the field hydrologic experiments at the microscale/plot-scale. Microscale hydrological studies are important both socially and economically as they emphasize the role of key factors (e.g. slope) in the utilization of water resources, the identification of critical hydrological thresholds for mobilizing, the propagation of soil particles in water flows and also the time it takes for pesticides, nutrients, and heavy metals to be mobilized. The key to conducting a successful hydrological microscale experiment lies in performing repeated attempts in the field. From an economic point of view, expedition (temporary) hydrologic field experiments are beneficial, as they shorten the working period and reduce the financial costs of the data acquisition process.
One of the challenges of experimental hydrology is the manipulation of “upscaling” or the statistical approach taken towards gathering and processing data.

Volume XVI |

Preliminary results in assessing flood-prone areas using UAS System within the Ozana River Upper Basin (the Eastern Carpathians)

Abstract: The UAV technique, and more recently UAS systems, play an ever important role in various domains of research and practical activities. The increase in number of publications focusing on their applicability is spectacular. The objective of this study is to highlight the efficiency of an integrated command-overflight-taking photo system, in an area with obvious problems related to hydric hazards and risks. The quasi-circular shape, the petrography of the upper Ozana basin, its orientation and its opening to the air masses predominantly movement direction, represent just a few of the reasons why it was chosen as the case study. Also, the settlements are displayed on the valleys thread, and this confluence has a remuu potential, in case of isolated rains in the two related subbasins. The UAV Phantom 4 quadcopter, the UAS system, the DroneDeploy application, the UAVPhoto application, the Visual-SFM application, the Daisy algorithm, the micro triangulation network (mesh), the work surface textures, a hyper-resolution of orthophotoplan, DSM model with a 5 cm resolution etc. are the technical elements that made modelling at a very high detail possible. The probability flow rates that were used, were provided by the two hydrometric stations located very close to the study area. Theywere calculated using professional applications approved at the national gauging network level, using the established Krițki-Menkel and Pearson III statistical distributions. The cross-section profiles was performed in the 10.x ArcMap module, using the 3D Analyst extension, and the hydraulic calculation to obtain the average velocity was done using the Manning equation; subsequently, the floodable surfaces was delineated on these profiles. Using the same ESRI module, the flood prone area polygon interpolation and it overlapping over the terrain model and over the orthophotomap were achieved. Paradoxically, the analysis of the results indicates a low degree of the anthropogenic habitat damage, but this aspect is due, in large measure, to the intervention of technical teams in the recalibration of the minor riverbed, massively clogged by alluvial transport.